HomepageCyberwarCybersecurityCyberspaceC-SpionageC-SabotageGefährdungKriminalitätComputerKommunikationmod. SystemeDer MenschQuanter-Syst.BildungFachberichteInformationKryptologieEmissionVerschlüsselungForschungBegriffeRechtTechnikVerschiedenes
Quanten Allgemein Einführung Theoretische Grundlagen  Entwicklung Kommunikation Anwendungen Länder Supercomputer

Quanten-Syteme



 

1.2 Informations-übertragung

2 Natürlich-verschränkte Systemeung

3 Erzeugung verschränkter Systeme

4 Anwendungen

5 Mathematische Betrachtung

6 Test auf Verschränkung

7 Siehe auch

8 Literatur

Literatur

W i k i l e a d s >>>>  1  >>>>

Quantencomputer, die theoretischen Grundlagen

Quantenverschränkung
aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche

Dieser Artikel wurde den Mitarbeitern der Redaktion Physik zur Qualitätssicherung aufgetragen. Wenn du dich mit dem Thema auskennst, bist du herzlich eingeladen, dich an der Prüfung und möglichen Verbesserung des Artikels zu beteiligen. Der Meinungsaustausch darüber findet derzeit nicht auf der Artikeldiskussionsseite, sondern auf der Qualitätssicherungs-Seite der Physik statt.


Das quantenphysikalische Phänomen der Verschränkung (selten Quantenkorrelation) liegt vor, wenn der Zustand eines Systems von zwei oder mehr Teilchen sich nicht als Kombination unabhängiger Ein-Teilchen-Zustände beschreiben lässt, sondern nur durch einen gemeinsamen Zustand.
Messergebnisse bestimmter Observablen verschränkter Teilchen (z. B. Observable Spin) sind korreliert, das heißt nicht statistisch unabhängig, auch wenn die Teilchen weit voneinander entfernt sind. Die Korrelation kann jedoch nicht durch lokale verborgene Variablen erklärt werden, da die Messergebnisse die Bellsche Ungleichung verletzen. Dies wiederum bedeutet, dass die Messergebnisse an verschränkten Teilchen nur durch eine nichtlokale Theorie erklärt werden können. Diese Nichtlokalität unterscheidet die Quantenmechanik grundsätzlich von klassischen physikalischen Theorien, bei denen eine unmittelbare Auswirkung lediglich lokal auftritt.
I
Infolge der Möglichkeit der Quantenverschränkung bestimmt sich der Gesamtzustand eines zusammengesetzten Systems im Allgemeinen nicht durch die Zustände seiner Teilsysteme, das heißt, er separiert nicht in Einteilchenzustände, die durch Linearkombination den Gesamtzustand darstellen. Ein verschränkter Zustand kann nicht durch Präparation aller Einzelsysteme in jeweils geeignete Zustände erzeugt werden.
Für räumlich getrennte Teilsysteme wird Quantenverschränkung zur Quanten-Nichtlokalität, das heißt, der Zustand des verschränkten Systems ist nicht lokalisiert, sondern erstreckt sich über das gesamte räumlich verteilte System. Ursprünglich nur für mikroskopische Systeme als relevant vermutet, wurde Quantenverschränkung in jüngerer Zeit über makroskopische Distanzen und für mesoskopische Systeme direkt nachgewiesen (siehe z. B. das Lemma Topologische Isolatoren, wo es um kohärente Systeme geht, die im Innern Isolatoren sind, aber an der Oberfläche metallisch leiten).


Aufgrund der Bornschen Wahrscheinlichkeitsinterpretation der Quantentheorie ist die Verschränkung lange als rein statistische Korrelation missverstanden und daher quasi „verniedlicht“ worden, selbst von Erwin Schrödinger, der diesen Begriff prägte. Verschränkte Zustände beschreiben individuelle Eigenschaften wie etwa den Gesamtdrehimpuls eines Systems von zwei oder mehr Teilchen. Die Tragweite des Begriffes hat anscheinend erst Albert Einstein im Jahr 1935 in der mit dem EPR-Effekt verbundenen Arbeit erkannt, obwohl er die wahre Bedeutung fehlinterpretierte (siehe unten). Die Bedeutung der Verschränkung ist erst dadurch bestätigt worden, dass John Stewart Bell 1964 feststellte, dass die Quantenmechanik die von ihm aufgestellte berühmte Bellsche Ungleichung verletzt. Dadurch wird, im Gegensatz zu den Grundannahmen Einsteins, eine noch unbekannte, durch verborgene Variablen beschriebene lokale Realität ausgeschlossen (die Quantenmechanik ist nichtlokal).
Die Quanten-Nichtlokalität bedarf daher auch keiner (in Einsteins Worten) „spukhaften Fernwirkung“;[1] ebenso wenig bedarf die sogenannte Quantenteleportation der Portation von irgendetwas. Dies bedeutet, dass das Phänomen der Verschränkung nicht auf sogenannten verborgenen Variablen beruht, die wir nur (noch) nicht zu entdecken vermögen.
Die Tatsache, dass die Verschränkung (im Gegensatz zur klassischen Physik) keine lokal-realistische Interpretation zulässt, bedeutet, dass entweder die Lokalität aufgegeben werden muss (etwa, wenn man der nichtlokalen Wellenfunktion selbst einen realen Charakter zubilligt – das geschieht insbesondere in Kollapstheorien, in der Viele-Welten-Interpretation oder der De-Broglie-Bohm-Theorie) oder das Konzept einer mikroskopischen Realität – oder aber beides; am radikalsten wird diese Abkehr vom klassischen Realismus in der Kopenhagener Deutung vertreten; nach dieser Interpretation, die bei den Physikern seit Jahrzehnten als Standard gilt, ist die Quantenmechanik weder real – da eine Messung den Zustand nicht feststellt, sondern präpariert – noch lokal – weil der Zustandsvektor die Wahrscheinlichkeitsamplituden gleichzeitig an allen Stellen festlegt, zum Beispiel .


Geschichte
Die Möglichkeit der Verschränkung gehört zu denjenigen Konsequenzen der Quantenmechanik, die den meisten Widerstand gegen diese Theorie als solche erzeugte. Albert Einstein, Boris Podolsky und Nathan Rosen formulierten 1935 den EPR-Effekt, nach dem Quantenverschränkung zur Verletzung des klassischen Prinzips des lokalen Realismus führen würde, was von Einstein in einem berühmten Zitat als „spukhafte Fernwirkung“ bezeichnet wurde.
Auf der anderen Seite konnten die Vorhersagen der Quantenmechanik höchst erfolgreich experimentell belegt werden, sogar Einsteins „spukhafte Fernwirkung“ wurde beobachtet. Viele Wissenschaftler führten dies irrtümlicherweise (siehe unten) auf unbekannte, deterministische „verborgene Variablen“ zurück, die dem lokalen Realismus unterworfen seien, aber zugleich alle Quantenphänomene erklären könnten.
1964 zeigte John Stewart Bell, dass die Effekte der Quantenverschränkung experimentell von den Ergebnissen der auf verborgenen Variablen basierenden Theorien unterschieden werden können (siehe Bellsche Ungleichung). Seine Ergebnisse wurden durch weitere Experimente bestätigt, sodass die Quantenverschränkung heute als physikalisches Phänomen anerkannt ist (bis auf wenige Abweichler). Er veranschaulichte Verschränkung und EPR-Effekt anhand des Vergleichs mit „Bertlmanns Socken“.
Nach Bohm ist trotzdem eine – allerdings nichtlokale – realistische Interpretation mit verborgenen Variablen möglich (siehe De-Broglie-Bohm-Theorie). Der Nobelpreisträger Anthony James Leggett konnte die Bellsche Ungleichung für diesen Fall verschärfen, und eine Forschungsgruppe um Anton Zeilinger[2] behauptet in einer Veröffentlichung in der Zeitschrift Nature, eine Verletzung auch der verschärften Ungleichung gezeigt zu haben. Dies würde zeigen, dass auch mit einer nichtlokalen Mechanik eine „realistische“ Interpretation der Quantenmechanik ausgeschlossen ist. Es muss jedoch auch in diesem Fall abgewartet werden, bis dies von anderen Wissenschaftlern bestätigt wird.
Unterdessen hat eine Gruppe der Universität Genf um Nicolas Gisin[3] der Geschwindigkeit der „spukhaften Fernwirkung“ eine extrem hohe „untere Grenze“ gesetzt: Die Gruppe konnte im Experiment zeigen, dass zwei verschränkte Photonen bezüglich verschiedener Eigenschaften, unter anderem der Polarisation, mit wenigstens 10.000-facher Lichtgeschwindigkeit kommunizieren müssten, wenn sie denn kommunizierten.


Informationsübertragung
Wenn auch nicht buchstabengetreu, so gehorcht die Verschränkung doch dem Geist der Relativitätstheorie. Zwar können verschränkte Systeme auch über große räumliche Entfernung miteinander wechselwirken, dabei kann aber keine Information übertragen werden, sodass die Kausalität nicht verletzt ist. Dafür gibt es zwei Gründe:
Quantenmechanische Messungen sind probabilistisch, d. h. nicht streng kausal.
Das No-Cloning-Theorem verbietet die statistische Überprüfung verschränkter Quantenzustände.
Zwar ist Informationsübertragung durch Verschränkung allein nicht möglich, wohl aber mit mehreren verschränkten Zuständen zusammen mit einem klassischen Informationskanal (Quantenteleportation). Trotz des Namens können wegen des klassischen Informationskanals keine Informationen schneller als das Licht übertragen werden.


Natürlich-verschränkte Systeme
Graham Fleming, Mohan Sarovar und andere (Berkeley) meinten mit Femtosekunden-Spektroskopie nachgewiesen zu haben, dass im Photosystem-Lichtsammelkomplex der Pflanzen eine über den gesamten Komplex reichende stabile Verschränkung von Photonen stattfindet, was die effiziente Nutzung der Lichtenergie ohne Wärmeverlust erst möglich mache. Bemerkenswert sei daran unter anderem die Temperaturstabilität des Phänomens.[4][5] Kritik daran äußerten Sandu Popescu, Hans J. Briegel und Markus Tiersch[6]
Die Hülle eines Atoms besteht bei Mehrelektronensystemen immer aus verschränkten Elektronen. Die korrekte Bindungsenergie lässt sich nur unter Berücksichtigung der Verschränkung der Elektronen berechnen.[7]
Erzeugung verschränkter Systeme[Bearbeiten | Quelltext bearbeiten]
Verschränkte Photonen können durch die parametrische Fluoreszenz (parametric down-conversion) in nichtlinear optischen Kristallen erzeugt werden. Dabei wird aus einem Photon mit hoher Energie im Kristall ein verschränktes Paar von Photonen mit niedrigerer Energie (der Hälfte der Energie des Ursprungsphotons) erzeugt. Die Richtungen, in die diese beiden Photonen abgestrahlt werden, sind miteinander und mit der Richtung des eingestrahlten Photons korreliert, sodass man derartig erzeugte verschränkte Photonen gut für Experimente (und andere Anwendungen) nutzen kann.
Bestimmte Atomsorten kann man mit Hilfe eines Lasers derart anregen, dass sie bei ihrer Rückkehr in den nichtangeregten Grundzustand ebenfalls ein Paar verschränkter Photonen abstrahlen. Diese werden jedoch mit gleicher Wahrscheinlichkeit in jede beliebige Raumrichtung abgestrahlt, sodass sie nicht sehr effizient genutzt werden können.
Bei Photonen bezieht sich die Verschränkung meist auf die Polarisation der Photonen. Misst man die Polarisation des einen Photons, ist dadurch die Polarisation des anderen Photons festgelegt (z. B. um 90° gedreht).
Bei Atomen bezieht sich die Verschränkung auf deren Spin. Regt man ein zweiatomiges Molekül mit einem Spin von null mit einem Laser derart hoch an, dass es zerfällt (dissoziiert), sind die beiden freiwerdenden Atome bezüglich ihres Spins verschränkt. Bei einer entsprechenden Messung wird eines von ihnen den Spin +1/2 zeigen, das andere −1/2. Es ist aber nicht vorhersagbar, welches der beiden Atome den positiven und welches den negativen haben wird. Misst man aber den Spin eines der beiden Atome, wird dadurch der Spin des anderen festgelegt.